
Redmine API

Redmine exposes some of its data through a REST API. This API provides access and basic CRUD

operations (create, update, delete) for the resources described below. The API supports
both XML and JSON formats.

API Description

Resource Status Notes Availability

Issues Stable 1.0

Projects Stable 1.0

Project

Memberships

Alpha 1.4

Users Stable 1.1

Time Entries Stable 1.1

News Prototype Prototype implementation for index only 1.1

Issue Relations Alpha 1.3

Versions Alpha 1.3

Wiki Pages Alpha 2.2

Queries Alpha 1.3

Attachments Beta Adding attachments via the API added in 1.4 1.3

Issue Statuses Alpha Provides the list of all statuses 1.3

Trackers Alpha Provides the list of all trackers 1.3

Enumerations Alpha
Provides the list of issue priorities and time tracking
activities

2.2

Issue Categories Alpha 1.3

Roles Alpha 1.4

Groups Alpha 2.1

Custom Fields Alpha 2.4

http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/JSON
http://www.redmine.org/projects/redmine/wiki/Rest_Issues
http://www.redmine.org/projects/redmine/wiki/Rest_Projects
http://www.redmine.org/projects/redmine/wiki/Rest_Memberships
http://www.redmine.org/projects/redmine/wiki/Rest_Memberships
http://www.redmine.org/projects/redmine/wiki/Rest_Users
http://www.redmine.org/projects/redmine/wiki/Rest_TimeEntries
http://www.redmine.org/projects/redmine/wiki/Rest_News
http://www.redmine.org/projects/redmine/wiki/Rest_IssueRelations
http://www.redmine.org/projects/redmine/wiki/Rest_Versions
http://www.redmine.org/projects/redmine/wiki/Rest_WikiPages
http://www.redmine.org/projects/redmine/wiki/Rest_Queries
http://www.redmine.org/projects/redmine/wiki/Rest_Attachments
http://www.redmine.org/projects/redmine/wiki/Rest_IssueStatuses
http://www.redmine.org/projects/redmine/wiki/Rest_Trackers
http://www.redmine.org/projects/redmine/wiki/Rest_Enumerations
http://www.redmine.org/projects/redmine/wiki/Rest_IssueCategories
http://www.redmine.org/projects/redmine/wiki/Rest_Roles
http://www.redmine.org/projects/redmine/wiki/Rest_Groups
http://www.redmine.org/projects/redmine/wiki/Rest_CustomFields

Search Alpha 3.3

Files Alpha 3.4

Status legend:

 Stable - feature complete, no major changes planned

 Beta - usable for integrations with some bugs or missing minor functionality

 Alpha - major functionality in place, needs feedback from API users and integrators

 Prototype - very rough implementation, possible major breaking changes mid-version. Not

recommended for integration

 Planned - planned in a future version, depending on developer availability

You can review the list of all the API changes for each version.

General topics

Specify Content-Type on POST/PUT requests

When creating or updating a remote element, the Content-Type of the request MUST be specified

even if the remote URL is suffixed accordingly (e.g. POST ../issues.json):

 for JSON content, it must be set to Content-Type: application/json.

 for XML content, to Content-Type: application/xml.

Authentication

Most of the time, the API requires authentication. To enable the API-style authentication, you have
to check Enable REST API in Administration -> Settings -> API. Then, authentication can be
done in 2 different ways:

 using your regular login/password via HTTP Basic authentication.

 using your API key which is a handy way to avoid putting a password in a script. The API

key may be attached to each request in one of the following way:
o passed in as a "key" parameter
o passed in as a username with a random password via HTTP Basic authentication

o passed in as a "X-Redmine-API-Key" HTTP header (added in Redmine 1.1.0)

You can find your API key on your account page (/my/account) when logged in, on the right-
hand pane of the default layout.

User Impersonation

As of Redmine 2.2.0, you can impersonate user through the REST API by setting the X-Redmine-

Switch-User header of your API request. It must be set to a user login (eg. X-Redmine-

Switch-User: jsmith). This only works when using the API with an administrator account, this

header will be ignored when using the API with a regular user account.

If the login specified with the X-Redmine-Switch-User header does not exist or is not active,

you will receive a 412 error response.

Collection resources and pagination

The response to a GET request on a collection resources (eg. /issues.xml, /users.xml)

generally won't return all the objects available in your database. Redmine 1.1.0 introduces a
common way to query such resources using the following parameters:

http://www.redmine.org/projects/redmine/wiki/Rest_Search
http://www.redmine.org/projects/redmine/wiki/Rest_Files
http://www.redmine.org/projects/redmine/issues?set_filter=1&status_id=c&fixed_version_id=*&category_id=32&c%5b%5d=tracker&c%5b%5d=subject&c%5b%5d=author&group_by=fixed_version&sort=fixed_version:desc,id
http://www.redmine.org/versions/20

 offset: the offset of the first object to retrieve

 limit: the number of items to be present in the response (default is 25, maximum is

100)

Examples:

GET /issues.xml

=> returns the 25 first issues

GET /issues.xml?limit=100

=> returns the 100 first issues

GET /issues.xml?offset=30&limit=10

=> returns 10 issues from the 30th

Responses to GET requests on collection resources provide information about the total object
count available in Redmine and the offset/limit used for the response. Examples:

GET /issues.xml

<issues type="array" total_count="2595" limit="25" offset="0">

 ...

</issues>

GET /issues.json

{ "issues":[...], "total_count":2595, "limit":25, "offset":0 }

Note: if you're using a REST client that does not support such top level attributes (total_count,

limit, offset), you can set the nometa parameter or X-Redmine-Nometa HTTP header to 1 to get

responses without them. Example:

GET /issues.xml?nometa=1

<issues type="array">

 ...

</issues>

Fetching associated data

Since of 1.1.0, you have to explicitly specify the associations you want to be included in the query

result by appending the include parameter to the query url :

Example:

To retrieve issue journals with its description:

GET /issues/296.xml?include=journals

<issue>

 <id>296</id>

 ...

 <journals type="array">

 ...

 </journals>

</issue>

You can also load multiple associations using a comma separated list of items.

Example:

GET /issues/296.xml?include=journals,changesets

<issue>

 <id>296</id>

 ...

 <journals type="array">

 ...

 </journals>

 <changesets type="array">

 ...

 </changesets>

</issue>

Working with custom fields

Most of the Redmine objects support custom fields. Their values can be found in

the custom_fields attributes.

http://www.redmine.org/versions/20

XML Example:

GET /issues/296.xml # an issue with 2 custom fields

<issue>

 <id>296</id>

 ...

 <custom_fields type="array">

 <custom_field name="Affected version" id="1">

 <value>1.0.1</value>

 </custom_field>

 <custom_field name="Resolution" id="2">

 <value>Fixed</value>

 </custom_field>

 </custom_fields>

</issue>

JSON Example:

GET /issues/296.json # an issue with 2 custom fields

{"issue":

 {

 "id":8471,

 ...

 "custom_fields":

 [

 {"value":"1.0.1","name":"Affected version","id":1},

 {"value":"Fixed","name":"Resolution","id":2}

]

 }

}

You can also set/change the values of the custom fields when creating/updating an object using
the same syntax (except that the custom field name is not required).

XML Example:

PUT /issues/296.xml

<issue>

 <subject>Updating custom fields of an issue</subject>

 ...

 <custom_fields type="array">

 <custom_field id="1">

 <value>1.0.2</value>

 </custom_field>

 <custom_field id="2">

 <value>Invalid</value>

 </custom_field>

 </custom_fields>

</issue>

Note: the type="array" attribute on custom_fields XML tag is strictly required.

JSON Example:

PUT /issues/296.json

{"issue":

 {

 "subject":"Updating custom fields of an issue",

 ...

 "custom_fields":

 [

 {"value":"1.0.2","id":1},

 {"value":"Invalid","id":2}

]

 }

}

Attaching files

Support for adding attachments through the REST API is added in Redmine 1.4.0.

First, you need to upload each file with a POST request to /uploads.xml (or /uploads.json).

The request body should be the content of the file you want to attach and the Content-

Type header must be set to application/octet-stream (otherwise you'll get a 406 Not

Acceptable response). If the upload succeeds, you get a 201 response that contains a token for

your uploaded file.

Then you can use this token to attach your uploaded file to a new or an existing issue.

XML Example

First, upload your file:

POST /uploads.xml

Content-Type: application/octet-stream

...

(request body is the file content)

201 response

<upload>

 <token>7167.ed1ccdb093229ca1bd0b043618d88743</token>

</upload>

Then create the issue using the upload token:

POST /issues.xml

<issue>

 <project_id>1</project_id>

 <subject>Creating an issue with a uploaded file</subject>

 <uploads type="array">

 <upload>

 <token>7167.ed1ccdb093229ca1bd0b043618d88743</token>

 <filename>image.png</filename>

 <description>An optional description here</description>

http://www.redmine.org/versions/40

 <content_type>image/png</content_type>

 </upload>

 </uploads>

</issue>

If you try to upload a file that exceeds the maximum size allowed, you get a 422 response:

POST /uploads.xml

Content-Type: application/octet-stream

...

(request body larger than the maximum size allowed)

422 response

<errors>

 <error>This file cannot be uploaded because it exceeds the maximum allowed file

size (1024000)</error>

</errors>

JSON Example

First, upload your file:

POST /uploads.json

Content-Type: application/octet-stream

...

(request body is the file content)

201 response

{"upload":{"token":"7167.ed1ccdb093229ca1bd0b043618d88743"}}

Then create the issue using the upload token:

POST /issues.json

{

 "issue": {

 "project_id": "1",

 "subject": "Creating an issue with a uploaded file",

 "uploads": [

 {"token": "7167.ed1ccdb093229ca1bd0b043618d88743", "filename": "image.png",

"content_type": "image/png"}

]

 }

}

You can also upload multiple files (by doing multiple POST requests to /uploads.json), then

create an issue with multiple attachments:

POST /issues.json

{

 "issue": {

 "project_id": "1",

 "subject": "Creating an issue with a uploaded file",

 "uploads": [

 {"token": "7167.ed1ccdb093229ca1bd0b043618d88743", "filename":

"image1.png", "content_type": "image/png"},

 {"token": "7168.d595398bbb104ed3bba0eed666785cc6", "filename":

"image2.png", "content_type": "image/png"}

]

 }

}

Validation errors

When trying to create or update an object with invalid or missing attribute parameters, you will

get a 422 Unprocessable Entity response. That means that the object could not be created

or updated. In such cases, the response body contains the corresponding error messages:

XML Example:

Request with invalid or missing attributes

POST /users.xml

<user>

 <login>john</login>

 <lastname>Smith</lastname>

 <mail>john</mail>

</uer>

422 response with the error messages in its body

<errors type="array">

 <error>First name can't be blank</error>

 <error>Email is invalid</error>

</errors>

JSON Example:

Request with invalid or missing attributes

POST /users.json

{

 "user":{

 "login":"john",

 "lastname":"Smith",

 "mail":"john"

 }

}

422 response with the error messages in its body

{

 "errors":[

 "First name can't be blank",

 "Email is invalid"

]

}

JSONP Support

Redmine 2.1.0+ API supports JSONP to request data from a Redmine server in a different domain

(say, with JQuery). The callback can be passed using the callback or jsonp parameter. As of

Redmine 2.3.0, JSONP support is optional and disabled by default, you can enable it by
checking Enable JSONP support in Administration -> Settings -> API.

http://en.wikipedia.org/wiki/JSONP

Example:

GET /issues.json?callback=myHandler

myHandler({"issues":[...]})

API Usage in various languages/tools

 Ruby

 PHP

 Python

 Perl

 Java

 cURL

 Drupal Redmine API module, 2.x branch

 .NET

 Delphi

API Change history

This section lists changes to the existing API features that may have broken backward
compatibility. New features of the API are listed in the API Description.

2012-01-29: Multiselect custom fields (r8721, 1.4.0)

Custom fields with multiple values are now supported in Redmine and may be found in API

responses. These custom fields have a multiple=true attribute and their value attribute is

an array.

Example:

GET /issues/296.json

{"issue":

 {

 "id":8471,

 ...

 "custom_fields":

 [

 {"value":["1.0.1","1.0.2"],"multiple":true,"name":"Affected

version","id":1},

 {"value":"Fixed","name":"Resolution","id":2}

]

 }

http://www.redmine.org/projects/redmine/wiki/Rest_api_with_ruby
http://www.redmine.org/projects/redmine/wiki/Rest_api_with_php
http://www.redmine.org/projects/redmine/wiki/Rest_api_with_python
http://www.redmine.org/projects/redmine/wiki/Rest_api_with_perl
http://www.redmine.org/projects/redmine/wiki/Rest_api_with_java
http://www.redmine.org/projects/redmine/wiki/Rest_api_with_curl
http://drupal.org/project/redmine
http://www.redmine.org/projects/redmine/wiki/Rest_api_with_csharp
http://www.redmine.org/projects/redmine/wiki/Rest_api_with_delphi
http://www.redmine.org/projects/redmine/wiki/Rest_api#API-Description
http://www.redmine.org/projects/redmine/repository/revisions/8721
http://www.redmine.org/versions/40

}

